Menu
  • Home
  • Call for Papers
  • Important Dates
  • Committees
  • Instructions for Authors
  • Program
  • Registration

Program

Tuesday 26 (Room C3.06) – 16:00 – 18:00
Meeting for the constitution of the AIxIA “AI for Quantum and Quantum for AI” (AIQxQIA) Workgroup – Scope and Objectives

Wednesday 27 (Room C3.06)
10:30 – 10:40 Opening Remarks
10:40 – 11:30 Invited Talk: Tensor Network Machine Learning
– Simone Montangero (University of Padua)

SESSION 1 – Quantum for AI (10:30 – 12:30)

11:30 – 11:45 “Quantum Patch-Based Autoencoder for Anomaly Segmentation” – F. Madeira, A. Poggiali and J.M. Lorenz

11:45 – 12:00 “Variational Compression of Circuits for State Preparation” – A. Berti, G. Antonioli, A. Bernasconi, G.M. Del Corso, R. Guidotti and A. Poggiali

12:00 – 12:15 “Qibolab: an open-source hybrid quantum operating system” – S. Bordoni and S. Carrazza

12:15 – 12:30 “Exploring the Role of Hamiltonian Expressibility in Ansatz Selection for Variational Quantum Algorithms” – F. Brozzi, G. Turati, M. Ferrari Dacrema and P. Cremonesi

12:30 – 13:30 LUNCH

SESSION 2 – AI for Quantum (16:00 – 18:00)

16:00 – 16:15 “Conditional Value at Risk enhanced Quantum Local Search” – N.H.H. Phuc, V.H. Nguyen and S.T. Anh


16:15 – 16:25 “Solving quantum circuit compilation problem variants through genetic algorithms” – L. Arufe, R. Rasconi, A. Oddi, R. Varela and M.Á. González


16:25 – 16:40 “An Application of Reinforcement Learning for Minor Embedding in Quantum Annealing” – R. Nembrini, M. Ferrari Dacrema and P. Cremonesi


16:40 – 16:55 “Parameter prediction for Variational quantum algorithms through Sequence modeling” – C. Loglisci, V. Losavio, B. De Carolis, M. Skenduli and D. Malerba


16:55 – 17:10 “Reinforcement Learning for Variational Quantum Circuit Design” – S. Foderà, G. Turati, R. Nembrini, M. Ferrari Dacrema and P. Cremonesi


17:10 – 17:25 “Quantum noise modeling through Reinforcement Learning” – S. Bordoni, S. Carrazza, S. Giagu, A. Papaluca, P. Buttarini and A. Sopena


17:25 – 17:35 “A Two-Phase Quantum Algorithm for the Partial Max-CSP” – M. Baioletti, F. Fagiolo, A. Oddi and R. Rasconi


17:35 – 17:45 “Enumerating Extensions in Abstract Argumentation by Using QUBO” – M. Baioletti, F. Rossi and F. Santini

17:45 – 18:00 Concluding Remarks

Invited Talk

Tensor Network Machine Learning

Simone Montangero – University of Padua

Abstract: We present the concepts of tensor network machine
learning, a quantum-inspired method that naturally bridges classical and
quantum machine learning techniques. We present its application to the
study of event classification at LHCb and review some new elements of
explainability that this approach enables.

Articoli recenti

  • WELCOME TO AIQxQIA

Commenti recenti

  1. GilbertCor su WELCOME TO AIQxQIA
  2. long distance movers su WELCOME TO AIQxQIA
  3. CIUTOTO su WELCOME TO AIQxQIA
  4. meilleur casino en ligne su WELCOME TO AIQxQIA
  5. telegram gruplari su WELCOME TO AIQxQIA

Archivi

  • Luglio 2024

Categorie

  • Senza categoria
©2025 | Powered by WordPress and Superb Themes!